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The Quantum Annealing Algorithm

From the moment of publication of this paper to
the first realization of a machine prototype
capable of implementing this algorithm there is a
gap of 14 years!

First Quantum Annealer model from D-Wave in
2012
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We introduce quantum fluctuations into the simulated annealing process of optimization problems, aiming at
faster convergence to the optimal state. Quantum fluctuations cause transitions between states and thus play the
same role as thermal fluctuations in the conventional approach. The idea is tested by the transverse Ising
maodel, in which the transverse field is a function of time similar to the temperature in the conventional method.
The goal is to find the ground state of the diagonal part of the Hamiltonian with high accuracy as quickly as
possible. We have solved the time-dependent Schrodinger equation numerically for small size systems with
various exchange interactions. Comparison with the results of the corresponding classical (thermal) method
reveals that the quantum annealing leads to the ground state with much larger probability in almost all cases if
we use the same annealing schedule. [S1063-651X(98)02910-9]

PACS number(s): 05.30.—d, 75.10.Nr, 89.70.+¢

L INTRODUCTION

The technique of simulated annealing (SA) was first pro-
posed by Kirkpatrick er al. [1] as a general method to solve
optimization problems. The idea is to use thermal fluctua-
tions to allow the system to escape from local minima of the
cost function so that the system reaches the global minimum
under an appropriate annealing schedule (the rate of decrease
of temperature). If the temperature is decreased too quickly,
the system may become trapped in a local minimum. Too
slow annealing, on the other hand, is practically useless al-
though such a process would certainly bring the system to
the global minimum. Geman and Geman proved a theorem
on the annealing schedule for a generic problem of combi-
natorial optimization [2]. They showed that any system
reaches the global minimum of the cost function asymptoti-
cally if the temperature is decreased as T'=¢/In r or slower,
where ¢ 1s a constant determined by the system size and
other structures of the cost function. This bound on the an-
nealing schedule may be the optimal one under generic con-

specific model system, rather than to develop a general argu-
ment, to gain insight into the role of quantum fluctuations in
the situation of optimization problem. Quantum effects have
been found to play a very similar role to thermal fluctuations
in the Hopfield model in a transverse field in thermal equi-
librium [5]. This observation motivates us to investigate dy-
namical properties of the Ising model under quantum fluc-
tuations in the form of a transverse field. We therefore
discuss in this paper the transverse Ising model with a van-
ety of exchange interactions. The transverse field controls the
rate of transition between states and thus plays the same role
as the temperature does in SA. We assume that the system
has no thermal fluctuations in the QA context and the term
““ground state’’ refers to the lowest-energy state of the
Hamiltonian without the transverse field term.

Static properties of the transverse Ising model have been
investigated quite extensively for many vears [6]. There
have, however, been very few studies on the dynamical be-
havior of the Ising model with a transverse field. We refer to
the work by Sato er al. who carried out quantum Monte
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Optimization problems

The standard form of a continuous optimization problem is!1]

minimize f(z)
T

subject to gi(z) <0, i=1,...,m
hi(x) =0, j=1,...,p

where

o f: 1" — F is the objective function to be minimized over the n-variable vector x,
e g/(x) < 0 are called inequality constraints

g hj(x) = () are called equality constraints, and

em=>0andp=0.

If m = p = 0, the problem is an unconstrained optimization problem. By convention, the standard form defines a minimization
problem. A maximization problem can be treated by negating the objective function.
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Annealing Algorithms

 Fortunately, brute force is not the only algorithm

for solving problems of this type. starting point

« There are many algorithms capable of identifying Eﬁg‘j’;?na;"’”
the optimal point of an objective function without |
having to analyze each of its points perturbation

and jump

perturbation
and jump

« One of these is known as Simulated Annealing

 Simulated annealing is a probabilistic strategy
used to solve optimization problems

 Without going into too much detail of the
algorithm, we can explain the idea behind it by
thinking of a ball that rolls along the graph of a
function, falling into the holes defined by the
minima.

Objective Function f(X)

« FEverytime aball lands in a hole it receives a
certain amount of energy, enough to make it jump >
over another piece of graph, looking for deeper Variable X
minima points.
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Quantum Annealing

 Quantum Annealing is the quantum version of
simulated annealing

« The principle of quantum mechanics that is most
exploited during the run of a quantum annealing
is the phenomenon of quantum tunneling

 Visually, we can consider the qguantum annealing
process as a simulated annealing process where
the ball, a macroscopic object, is replaced by a
microscopic particle.

« How does the Quantum Annealing process work?
The core of the algorithm is in the Adiabatic
Theorem:

A physical system remains in its instantaneous
eigenstate if a given perturbation is acting on it
slowly enough and if there is a gap between the
eigenvalue and the rest of the Hamiltonian's
spectrum

starting point

perturbation
and jump
perturbation
and jump
perturbation
. and jump
‘e
°
t
c
i
Q
2
: ¢/
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quantum
quantum quantum tunnelling
tunnelling tunnelling
>
Variable X
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Quantum Annealing

 Optimization through quantum annealing begins
with choosing an objective function different than
the one you want to optimize.

« The choice always falls on a simple function, of
which the global minimum is known (for
example).

« The annealing process consists in slowly
modifying the objective function to gradually
change its shape

« The process lasts until the initial objective
function becomes equivalent to the objective
function whose you really want to optimize

« If the annealing took place slowly enough, the
adiabatic theorem assures us that in all the
transformation phases of the objective function
the global minimum point has adapted to the Variable X
shape of the function

Objective Function f(X)
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D-wave Docs
https://docs.dwavesys.com/docs/latest/guides_solvers.html

Quantum Annealing

#(s) B(s) '
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where o are Pauli matrices operating on a qubit g,

and h and J are the qubit biases and coupling

BIAS: The programmable quantity that controls the external magnetic field is called a bias,
and the qubit minimizes its energy in the presence of the bias.

COUPLERS: link qubits together so they can influence each other. This is done with a device
called a coupler. A coupler can make two qubits tend to end up in the same state—both 0 or
both T—or it can make them tend to be in opposite states.

Initial Hamiltonian (first term)—The lowest-energy state of the initial Hamiltonian is when all
qubits are in a superposition state of 0 and 1. This term is also called the tunneling
Hamiltonian.

Final Hamiltonian (second term)—The lowest-energy state of the final Hamiltonian is the ' s
answer to the problem that you are trying to solve. The final state is a classical state, and
includes the qubit biases and the couplings between qubits. This t

the problem Hamiltonian. OUANTUM
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The Quantum Annealer

 Currently, we can talk about The quantum
annealer and not about a generic quantum
annealer since today there is only one
manufacturer for this type of device.

« The company in question is called D-Wave

« Atthe moment the latest quantum annealer
model has more than 5000 qubits and about
30,000 connectors

« We will seein the course of the lesson the
importance of these numbers

« Tounderstand how to interact with a quantum
annealer, we need the following concepts:
Objective functions
Ising model (Ising Hamiltonian)

Quadratic Unconstrained Binary Optimization problems
(QUBO problems)

Graphs and embedding

CINECA ()
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Objective Function

« Toexpress a problem in a form that allows its
resolution through quantum annealing, we need
an objective function,

 An objective function is a mathematical
expression of the energy of a system. Put simply,
it represents the function whose minimum you
want to find

« When the solveris a QPU, energy is a function of
the binary variables that represent its qubits; for
classical quantum hybrid solvers, energy might
be a more abstract function.

« For most problems, the lower the energy of the
objective function, the better the solution.
Sometimes any state of local minimum for
energy is an acceptable solution to the original
problem; for other problems only optimal
solutions are acceptable.

Energy

Global Minimum

Local Minimum

Solution Space
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Objective Function

« Expressing a problem through a minimizable
objective function means thinking of every
problem as a minimization problem

« Mathematically speaking, this is always a
possible operation

 Although, in some cases it becomes very difficult.

« The objective functions accepted by the quantum
annealer of D-Wave are of two types (equivalent
to each other): Ising Hamiltonians and QUBO
formulations

Energy

Global Minimum

Local Minimum

Solution Space

x+1=2

win[2 = (x+ )T
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Ising Model

« The Ising Model is a well-known model in statistical mechanics.

 Quadratic and binary model, an Ising Hamiltonian has as variables +1 and -1 (commonly called spin variables:
spin up for the value +1, spin down for the value -1).

« The relationships between the spins, represented by the coupling values of the Hamiltonian, represent the
correlations or anti-correlations.

« Mathematically, it is expressed in this form

Eisihg(s) = Z,'?hs + E.'? 1_2[,; 1[35[51

« Where the coefficients h represent the bias values associated with the qubits and the coefficients J represent
the strength of the coupling bonds
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QUBO Problems

« QUBO (Quadratic Unconstrained Binary Optimization) problems are well known problems in the field of
combinatorial optimization.

« A QUBO problem is defined by a matrix Q (upper triangular) and a vector of binary variables x.
 |ts mathematical formis

F(X) ZQLL X i‘j i,jxtxj

« Where the diagonal terms of the matrix Q play the role of linear coefficients while the other non-zero elements
are the quadratic coefficients. In matrix form

min XTQX.
x&{0,1}"
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Equivalence QUBO and ISING model

* The Ocean software (libraries for running problems on D-Wave quantum
computers) accepts either Ising or QUBO problems, but flags may need to be
turned on to indicate whether we are interested in a "BINARY" (QUBO) or
"SPIN" (Ising) solution.

* Ising and QUBO expressions are isomorphic. See proof:
https://support.dwavesys.com/hc/en-us/community/posts/360017439853-
Difference-between-BQM-Ising-and-QUBO-problems-

WARNING: the choice of spin or binary can affect the way the problem can
be expressed

- QUBOs can always be fully expressed in both expanded and matrix
forms (x> = x;:02 =0and 12 = 1)

- while Ising can be fully expressed in the expanded form, but not
completely in the matrix form. =1 +2xy + 3x3 + 4120 + droxy + 6wy # 2] + 205 + 325 + doyxo + Sagrg + 6123
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D-wave Leap

https://cloud.dwavesys.com/leap/

Dawave @eap Dashboard

Dashboard T minute for free

Project: CINECA

BUT we can provide you

Getting Started pisMiss € )
more computation hours

O 0
| Tl

Many examples!
CT WITH OUR DEMOS EXPLORE OUR EXAMPLES ACCESS OUR RESOURCES

Find out how D-Wave quantum computers Learn from example applications or build Demos, documentation, and tools to hel

ATTENTION: do not store here
work by running our brief demos. your own in our Leap IDE. you harness the power of quantum
compuing. your code!

‘ What's New > Monthly Subscription Usage Summary @ Project: CINEC
c I\Dhuage eeLaPVE R Usage Details
Q , Q . Hybrid Solvers Total (all regions) ¢
DAT!
| 00.00.00.000:
Subscription Used TIME USED
Constrained Quadratic Model 011%
Solver Update: Now O 0
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QCSC

QUANTUM
COMPUTING
AND
SIMULATION
CENTER

https://qcsc.dfa.unipd.it/

How to access to more computational hours?

through our PROJECT CINECA

- QCSC Calis
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Programming a Quantum Annealer

 INSTALLATION AND CONFIGURATION INSTRUCTIONS :

https://docs.ocean.dwavesys.com/en/stable/overview/install.html

Create a virtual environment for your Ocean work, not mandatory but recommend!

python -m venv ocean
. ocean/bin/activate

It is necessary to have Python installed!

For a standard installation

pip install dwave-ocean-sdk
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Programming a Quantum Annealer

 INSTALLATION AND CONFIGURATION INSTRUCTIONS :

Set Up Your Environment

% dwave setup
Optionally install non-open-source packages and configure your environment.
Do you want to select non-open-source packages to install (y/n)? [y]: #

D-Wave Drivers

These drivers enable some automated performance-tuning features.

This package is available under the 'D-Wawve EULA' license.

The terms of the license are available online: https://docs.ocean.dwavesys.com/eula
Install (y/m)? [y]: ¢

Installing: D-Wave Drivers

Successftully installed D-Wave Drivers.

D-Wave Problem Inspector

This tool wisualizes problems submitted to the quantum computer and the results returned.
This package is awvailable under the ‘D-Wave EULA' license.

The terms of the license are available online: https://docs.ocean.dwavesys.com/eula
Install (y/m}? [y]: ¢

Installing: D-Wave Problem Inspector

Successfully installed D-Wawve Problem Inspector.

Creating the D-Wave configuration file.
Using the simplified configuration flow.
Try 'dwave config create --full' for more options.

Creating new configuration file: fhome/jane/.config/dwave/dwave.conf
Profile [defaults]: ¢
Updating ewxisting profile: defaults
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Programming a Quantum Annealer

« PyQUBO is a python library, with a C ++ backend, written by DWAVE to use its quantum annealer.

« PyQUBO is a very handy utility for writing problems in QUBO or ISING form (but it's not the only way).
Let's see how to use it

« Solve a problem set via pyQUBO

« After setting the Hamiltonian of the problem, compiled and transformed into a bgm object (stands for
Binary Quadratic Model and is just a general term that encompasses both Ising and QUBO problems.)

>>> from pyqubo import Binary

>»> x1, X2 = Binary('x1"), Binary('x2")
>»> H = (X1 + x2 - 1)%%2

>»> model = H.compile()

>>> bgm = model.to bgm()
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Example: Antenna placement problem

« Suppose we have a certain number of antennas and a
certain number of possible sites to place these
antennas.

« Each antenna with its signal can cover a certain area.
When multiple signals overlap, however, unpleasant
interference is generated

 Qurtaskis to position the antennas in order to maximize
the surface covered by the signal and at the same time
minimize interference between the antennas.
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QUBO Problems

OUR MODELING (OTHER WAYS EXIST!):

« The area covered by a single antenna such as the area of the circle whose radius is the parameter that
describes the range of action of each individual antenna (problem data)

« Theinterference surface between two antennas as the area of the circle whose radius is given by the following
formula

=

Py = mox 1 0,r +r —dist | ¢, ¢

-

- wherer and r; are the parameters relating to the range of action of the antennas i and j and dist(c, c;) is the
distance between the points where the antennas are positioned
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QUBO Problems
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QUBO Problems

p

Pi3 = max0,r; +r. —

-
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QUBO Problems

« With the definition of the rho radius, we can define the
interference area between the overlap of two antennasiand |

as.

— 2
By pi; * T

reason: homogeneity of coefficients

« Now we model the antennas with the help of a vector of
binary variables. We simply associate a binary variable g; with
each possible site. The variable will take the value Tif itis a
place where it is recommended to install an antenna, 0

otherwise
[90* =1 Q19 ]
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QUBO Problems

« Let's formulate our problem. At this stage, we must always
think about a minimization problem. To maximize, simply
reverse the sign. Keeping in mind that

_ 2 = 2 .

 Maximize covering area and minimize the interference,
« Alpha parameter: how much interference impacts my model
(remember: we consider approximate solutions)

Y
(=0 S
CINECA ()2 hs ue



Add a Constraint to a QUBO Problem

By definition, a QUBO problem admits no constraints

Quadratic
Unconstrained
Binary
Optimization

e Still, there is a way.
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QUBO Problem is a general problem!

D-wave built-in functions, but building you own QUBO is more efficient

Penalty function
QU BO model iS more gene ra ble tha N you An algorithm for solving constrained optimization problems. In the context of Ocean tools, penalty functions
cou Id th i N k: are ;yp]cal!y employed to increase the energy level of a problem’s objective function by penalizing non-valid
configurations.

Equality constraints .
— = penalty function method

Inequality constraint = add variables ORIGINAL_QUBO + LAMBDA * EQ.CONSTRAINT

Higher order terms—> add variables i
Cons: many variables!

Non binary variables - add variables

WARNING: problem structure changes (To be considered )!
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Penalty function method

problem ‘ 'co'mbinatorial
optimization problem

EXAMPLE

Penalty function

method Cost function:

N
argmax, (Z cixl-)

I=i
z*=argmax f(z)+Ag(2) Constraint: x; + x, =1

QUBO:

argmax, (X, cix; — A(1 — x5 — x4)?) =
argmax,(c;x? + c,x5 + (c3 + 1) x5 +(cq + 1) x7 — 2
Ax3x, + (cs + 1) x£)

QUBO (Quadratic
Unconstrained Binary
Optimization)
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Graphs

Mathematically speaking, an undirected graph is defined
asasetofvertices V' = {v,, .., v}

andasetofedges ECV xV

Each node and each edge can be weighted with an
arbitrary value (in this case we are talking about a
weighted graph)

In this way it is possible to establish a one-to-one
correspondence between a weighted graph and a QUBO
function

H(e,b) = 50+ 7ab — 3b

a . b

5 -3
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Embedding a problem on a graph

7 — _ « But what if the graph with which we want to represent the
N, RS QUBO function does not have enough vertices or edges to

XA

do so?

 Inthe case of the vertices, there is nothing to do: we have
to change the problem and / or graph!

 Inthe case of the edges, however, something is possible to

N7 do
\/ IV .
;'23-‘2-?' X3 « The core of a quantum annealer is represented by a graph:
) }ﬁg” 24 in the figure, we can observe the Chimera graph, that is the
Hﬁ, ) Py topology of one of the D-Wave models (the penultimate
model)
\ | L
\@__¢ » This means that to solve a QUBO problem it is necessary
A\ to map your problem on the graph of the selected quantum
\P.w.r X7
AN, 3 annealer

\@LNT
""“IV
P\

)7‘\ v

« This procedure is called embedding
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Embedding a problem on a graph

« Suppose we have a QUBO problem that can be translated with the following graph

« Suppose we also have a quantum annealer with a graph of this shape

« By looking at them, it seems impossible to map our problem to the target graph

« The embedding procedure allows for this mapping by forcing multiple qubits to behave as one

 Inacertain sense, we can say that the qubits engaged in embedding are placed in entanglement relationship: they
are forced to collapse in the same classical state

-1
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Embedding on Chimera and Pegasus
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Embedding on Chimera and Pegasus

Minor-embedding
The nodes and edges on the graph that represents an objective function translate to the qubits and couplers
in Chimera. Each logical qubit, in the graph of the objective function, may be represented by one or more

physical qubits. The process of mapping the logical qubits to physical qubits is known as minor embedding.

E DWave 20000 6
e DWave Advantaged,l
B Minimum required

80 -

Number of qubits

2 4 6 8 10 12 14 16 QUANTUM
Switch choice count C I N ECA @ COMPUTING LAB




Antenna Placement: Jupyter Notebook

" jupyter AntennaPlacement (autosaved)

File Edit

View

Insert Cell Kernel Widgets Help

B+ = @& B 4+ ¥ PRin B C MW Code v | =

Trustec

In [18]:

W~ B WM e

import numpy as np

from pyqubo import Binary

from pyqubo import Array

import neal

import networkx as nx

import matplotlib.pyplot as plt
import math

import random

from collections import Counter

In [19]:

In [20]:

B h

W~ W s W=

=
=

a
a

#Distance function

def dist(pos,i,j):
d = (pos[i][@]-pos[j][@])**2+(pos[i][1]-pos[F][1])**2
return math.sqrt(d)

#let us suppose to have 20 antennas to place
#At the beginning they are at random positions

N=20

GR=nx.Graph();
for i in range(N):

GR.add_node(i)
pos=nx.random_layout(GR)
nx.draw(GR,pos=pos,with_labels = True)

P

Let's take a look at the code!

CINECA @

QUANTUM
COMPUTING LAB



INTRODUCTION TO D-wave COMPUTERS

Gabriella Bettonte
Mail: g.bettonte@cineca.it

Website: https;//www.quantumcomputinglab.cineca.it/

 CINECA @mmc -

Thanks to Daniele Ottaviani for the slides


mailto:g.bettonte@cineca.it

