Incontri introduttivi al Quantum Computing Calcolatori e simulatori quantistici nella NISQ era – cosa sono e cosa possono fare

QUANTUM COMPUTING

SIMULATION CENTER

AND

Ilaria Siloi (Unipd)

14 marzo 2023

First steps in computer science

1936 Turing Machine

The abstract notion of a programmable and universal computer

Church-Turing thesis: equivalence between the class of algorithms performed on some physical device with the rigorous mathematical concept of universal Turing Machine.

Alan Turing (1912-1954)

Ex: Turing tape (memory) divided in cells. The control unit moves and executes basic operations (i.e. reading/writing/erasing). Any computable quantity is obtained in a finite number of steps.

1945 Von Neumann architecture

A theoretical model for practical design of a universal Turing Machine:

- Control Unit: fetches instructions/data from memory
- Arithmetic Logic Unit: basic arithmetic operations
- Memory: store data and instructions
- I/O

John Von Neumann (1905-1957)

1947 Bardeen, Brattain, Shockley Hardware development with transistor!

Why quantum computing?

1965 Moore law

• Computer power double for a constant cost every two years (since 1960)

PLATEAU

- Expensive and difficult nanofabrication techniques (<10nm!!)
- Quantum effects are no longer negligible

2012 REPRESENT BCA ESTIMATES.

Quantum Simulators & Universal Quantum Computers

Richard Feynmann (1912-1954)

1982 Quantum Simulators

- At the atomic (sub-atomic) scale, Nature obeys to quantum mechanical laws
- Simulating quantum mechanical systems with ordinary computer is *not efficient*
- By quantum simulator, we understand a controllable quantum system used to simulate or emulate other quantum systems. Quantum simulators mimic quantum processes.

Quantum Simulators & Universal Quantum Computers

Richard Feynmann (1912-1954)

1982 Quantum Simulators

- At the atomic (sub-atomic) scale, Nature obeys to quantum mechanical laws
- Simulating quantum mechanical systems with ordinary computer is *not efficient*
- By quantum simulator, we understand a controllable quantum system used to simulate or emulate other quantum systems. Quantum simulators mimic quantum processes.

Quantum Simulators & Universal Quantum Computers

Richard Feynmann (1912-1954)

1982 Quantum Simulators

- At the atomic (sub-atomic) scale, Nature obeys to quantum mechanical laws
- Simulating quantum mechanical systems with ordinary computer is *not efficient*
- By quantum simulator, we understand a controllable quantum system used to simulate or emulate other quantum systems. Quantum simulators mimic quantum processes.

1985 Universal Quantum Computer

- Using the laws of quantum mechanics to define a quantum Turing machine?
- Universal Quantum Computer is an abstract machine used to model the effects of a quantum computer: any quantum algorithm can be expressed as a quantum Turing Machine.
- A Universal Quantum Computer efficiently solves computational problems which have no efficient solution on a classical computer.

David Deutsch (1953)

R. Feynman, International Journal of Theoretical Physics volume 21, pages 467–488 (1982)

Deutsch, David. "Quantum theory, the Church–Turing principle and the universal quantum computer." *Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences*400.1818 (1985): 97-117.

Quantum algorithms

1994 Shor's algorithm

- On a quantum computer finding the prime factors of an integer is exponentially faster than any classical algorithm known so far.
- Prime factoring is at the core of many encryption scheme (i.e. RSA)
- Indication for quantum computer to be more powerful than classical computers

1995 Grover's algorithm

- Conducting search through some unstructured database is polynomially faster on quantum computer
- It needs to call a black box function O(N^{1/2}) times.
- Widespread applicability (constrained satisfaction problems, 3SAT ...)

Lov Grover (1961)

Where are we now with quantum computing?

Noisy Intermediate Scale Quantum Computers (NISQ)

- Limited number of qubits n~20-400
- Hardly controllable systems;
- Too many errors in logical
- Error correction is not possible gates ~ $O(10^{-3}/10^{-4})$
- □ Application to real-world problems;
- Proving quantum advantage

Hybrid quantum-classical algorithms

Doesn't solve efficiently certain tasks

Hybrid quantum-classical algorithms

Leonardo @ CINECA Supercomputer 3500 CPU, 14000 GPU Input parameters

Quantum Computer output

Pasqal (neutral atoms) 300 qubits

Optimization problems

Optimization problems

Earth Observation

Traffic

looking for the minimum of a cost function

Combinatorial optimization problems

(QAOA, quantum annealing, ...)

Optimization problems

Earth Observation

Traffic

looking for the minimum of a cost function

Combinatorial optimization problems

(QAOA, quantum annealing, ...)

Machine Learning Molecules and Materials

(VQE, quantum deflation, ...)

Article

Quantum supremacy using a programmable superconducting processor

https://doi.org/10.1038/s41586-019-1666-5

Received: 22 July 2019

Accepted: 20 September 2019

Published online: 23 October 2019

Frank Arute¹, Kunal Arya¹, Ryan Babbush¹, Dave Bacon¹, Joseph C. Bardin^{1,2}, Rami Barends¹, Rupak Biswas³, Sergio Boixo¹, Fernando G. S. L. Brandao^{1,4}, David A. Buell¹, Brian Burkett¹, Yu Chen¹, Zijun Chen¹, Ben Chiaro⁵, Roberto Collins¹, William Courtney¹, Andrew Dunsworth¹, Edward Farhi¹, Brooks Foxen^{1,5}, Austin Fowler¹, Craig Gidney¹, Marissa Giustina¹, Rob Graff¹, Keith Guerin¹, Steve Habegger¹, Matthew P. Harrigan¹, Michael J. Hartmann^{1,6}, Alan Ho¹, Markus Hoffmann¹, Trent Huang¹, Travis S. Humble⁷, Sergei V. Isakov¹, Evan Jeffrey¹, Zhang Jiang¹, Dvir Kafri¹, Kostyantyn Kechedzhi¹, Julian Kelly¹, Paul V. Klimov¹, Sergey Knysh¹, Alexander Korotkov^{1,8}, Fedor Kostritsa¹, David Landhuis¹, Mike Lindmark¹, Erik Lucero¹, Dmitry Lyakh⁹, Salvatore Mandrà^{3,10}, Jarrod R. McClean¹, Matthew McEwen⁵, Anthony Megrant¹, Xiao Mi¹, Kristel Michielsen^{11,12}, Masoud Mohseni¹, Josh Mutus¹, Ofer Naaman¹, Matthew Neeley¹, Charles Neill¹, Murphy Yuezhen Niu¹, Eric Ostby¹, Andre Petukhov¹, John C. Platt¹, Chris Quintana¹, Eleanor G. Rieffel³, Pedram Roushan¹, Nicholas C. Rubin¹, Daniel Sank¹, Kevin J. Satzinger¹, Vadim Smelyanskiy¹, Kevin J. Sung^{1,13}, Matthew D. Trevithick¹, Amit Vainsencher¹, Benjamin Villalonga^{1,14}, Theodore White¹, Z. Jamie Yao¹, Ping Yeh¹, Adam Zalcman¹, Hartmut Neven¹ & John M. Martinis^{1,5*}

Quantum supremacy: quantum computer solves a problem faster (with less resources) than a classical computer

Problem: random quantum state generation with a quantum random circuit

Adjustable coupler 10 mm

Sycamore, 53 qubits

!!!! Solution on a classical computer takes 10KY !!!

Quantum supremacy using a programmable superconducting processor

https://doi.org/10.1038/s41586-019-1666-5

Received: 22 July 2019

Accepted: 20 September 2019

Published online: 23 October 2019

Frank Arute¹, Kunal Arya¹, Ryan Babbush¹, Dave Bacon¹, Joseph C. Bardin^{1,2}, Rami Barends¹, Rupak Biswas³, Sergio Boixo¹, Fernando G. S. L. Brandao^{1,4}, David A. Buell¹, Brian Burkett¹, Yu Chen¹, Zijun Chen¹, Ben Chiaro⁵, Roberto Collins¹, William Courtney¹, Andrew Dunsworth¹, Edward Farhi¹, Brooks Foxen^{1,5}, Austin Fowler¹, Craig Gidney¹, Marissa Giustina¹, Rob Graff¹, Keith Guerin¹, Steve Habegger¹, Matthew P. Harrigan¹, Michael J. Hartmann^{1,6}, Alan Ho¹, Markus Hoffmann¹, Trent Huang¹, Travis S. Humble⁷, Sergei V. Isakov¹, Evan Jeffrey¹, Zhang Jiang¹, Dvir Kafri¹, Kostyantyn Kechedzhi¹, Julian Kelly¹, Paul V. Klimov¹, Sergey Knysh¹, Alexander Korotkov^{1,8}, Fedor Kostritsa¹, David Landhuis¹, Mike Lindmark¹, Erik Lucero¹, Dmitry Lyakh⁹, Salvatore Mandrà^{3,10}, Jarrod R. McClean¹, Matthew McEwen⁵, Anthony Megrant¹, Xiao Mi¹, Kristel Michielsen^{11,12}, Masoud Mohseni¹, Josh Mutus¹, Ofer Naaman¹, Matthew Neeley¹, Charles Neill¹, Murphy Yuezhen Niu¹, Eric Ostby¹, Andre Petukhov¹, John C. Platt¹, Chris Quintana¹, Eleanor G. Rieffel³, Pedram Roushan¹, Nicholas C. Rubin¹, Daniel Sank¹, Kevin J. Satzinger¹, Vadim Smelyanskiy¹, Kevin J. Sung^{1,13}, Matthew D. Trevithick¹, Amit Vainsencher¹, Benjamin Villalonga^{1,14}, Theodore White¹, Z. Jamie Yao¹, Ping Yeh¹, Adam Zalcman¹, Hartmut Neven¹ & John M. Martinis^{1,5*}

Quantum supremacy: quantum computer solves a problem faster (with less resources) than a classical computer

Problem: random quantum state generation with a quantum random circuit Not very useful

!!!! Solution on a classical computer takes 10KY !!!

By approximating quantum correlations, one can simulate 'a faithful' Google experiment on a laptop!

Sycamore, 53 qubits

Quantum advantage is not a fixed concept.

Practical quantum advantage

...When do you need a quantum computer?

When quantum correlations cannot be approximated with classical methods

Simulation of condensed matter systems at the atomic scale

Other examples of quantum advantage

QUANTUM SIMULATION

Quantum optimization of maximum independent set using Rydberg atom arrays

S. Ebadi¹[†], A. Keesling^{1,2}[†], M. Cain¹[†], T. T. Wang¹, H. Levine¹[‡], D. Bluvstein¹, G. Semeghini¹, A. Omran^{1,2}, J.-G. Liu^{1,2}, R. Samajdar¹, X.-Z. Luo^{2,3,4}, B. Nash⁵, X. Gao¹, B. Barak⁵, E. Farhi^{6,7}, S. Sachdev^{1,8}, N. Gemelke², L. Zhou^{1,9}, S. Choi⁷, H. Pichler^{10,11}, S.-T. Wang², M. Greiner^{1*}, V. Vuletić^{12*}, M. D. Lukin^{1*}

Realizing quantum speedup for practically relevant, computationally hard problems is a central challenge in quantum information science. Using Rydberg atom arrays with up to 289 qubits in two spatial dimensions, we experimentally investigate quantum algorithms for solving the maximum independent set problem. We use a hardware-efficient encoding associated with Rydberg blockade, realize closed-loop optimization to test several variational algorithms, and subsequently apply them to systematically explore a class of graphs with programmable connectivity. We find that the problem hardness is controlled by the solution degeneracy and number of local minima, and we experimentally benchmark the quantum algorithm's performance against classical simulated annealing. On the hardest graphs, we observe a superlinear quantum speedup in finding exact solutions in the deep circuit regime and analyze its origins.

Article

Quantum computational advantage with a programmable photonic processor

https://doi.org/10.1038/s41586-022-04725	
Received: 12 November 2021	
Accepted: 5 April 2022	
Published online: 1 June 2022	

Lars S. Madsen^{1,3}, Fabian Laudenbach^{1,3}, Mohsen Falamarzi. Askarani^{1,3}, Fabien Rortais¹, Trevor Vincent¹, Jacob F. F. Bulmer¹, Filippo M. Miatto¹, Leonhard Neuhaus¹, Lukas G. Helt¹, Matthew J. Collins¹, Adriana E. Lita², Thomas Gerrits², Sae Woo Nam², Varun D. Vaidya¹, Matteo Menotti¹, Ish Dhand¹, Zachary Vernon¹, Nicolás Quesada¹²² & Jonathan Lavoie¹¹²³

Perspective

Practical quantum advantage in quantum simulation

nttps://doi.org/10.1038/s41586-022-04940-6	Andrew J. Daley ¹⁵³ , Immanuel Bloch ^{2.3.4} , Christian Kokail ^{5,6} , Stuart Flannigan ¹ , Natalie Pearson ¹ , Matthias Troyer ⁷ & Peter Zoller ^{5,6} The development of quantum computing across several technologies and platforms has reached the point of having an advantage over classical computers for an artificial problem, a point known as 'quantum advantage'. As a next step along the development
Received: 1 July 2021	
Accepted: 7 June 2022	
Published online: 27 July 2022	
Check for updates	
	of this technology, it is now important to discuss 'practical quantum advantage', the point at which quantum devices will solve problems of practical interest that are not
	tractable for traditional supercomputers. Many of the most promising short-term

Basics of quantum computation

Single qubits gates

input output $|0\rangle \rightarrow |1\rangle$ $|1\rangle \rightarrow |0\rangle$

input output $|0\rangle \rightarrow \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$ $|1\rangle \rightarrow \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$

superposition

Two-qubit gates

Universal set of gates: any algorithm can be decomposed as a sequence of ({CNOT, single qubit gate})

Reversibility': can always go back to the input from the output

QUANTUM COMPUTER

• WHAT?

A quantum computer is a physical system composed of many qubits, whose dynamics is controlled;

• HOW?

It processes information via logical operations while exploiting the laws of quantum mechanics

Physical systems

Incontri introduttivi al **Quantum Computing**

14/03/2023, h. 17:00 Calcolatori e simulatori quantistici nella NISO era: COSA SONO E COSA POSSONO fare Ilaria Siloi (Unipd)

21/03/2023, h. 17:00

Introduzione all'emulatore di calcolatore quantistico HPC "Quantum Matcha Tea" Marco Ballarin (Unipd)

28/03/2023, h. 17:00

Introduzione alle macchine Dwave Gabriella Bettonte (CINECA)

04/04/2023, h. 17:00

Introduzione alle macchine PASQAL Riccardo Mengoni (CINECA)

11/04/2023, h. 17:00

Introduzione alle macchine QuERA Computing

Tutte le lezioni saranno su zoom (al link: https://unipd.link/QCSC-Lessons), registrate e rese disponibili sul sito gcsc.dfa.unipd.it

Partners

Thank you !

Dove provare un Quantum Computer?

 $\hat{H}|\psi_n$

https://quantum-com puting.ibm.com

Accesso gratuito a tempo macchina su quantum computer

Bit e' una variabile binaria unita' elementare di informazione classica

0 1

Rapresentazione decimale VS binaria

$$(11)_{d} = 1 \times 10^{1} + 1 \times 10^{0} = (8 + 2 + 1)_{d}$$

= 1 \times 2^{3} + 0^{2} + 1 \times 2^{1} + 1 \times 2^{0}
(1011)_{b}

 $(3.14)_d = (11.001000111...)_b$

Porte logiche (gate) operano sui bits attraverso la logica Booleana.

= Le porte logiche sono componenti fisiche che usano i transistor per operare gli switch elettronici quando una certa condizione e' verificata.

Operazione logica: f: $\{0,1\}^n \square \{0,1\}^m$

Set universale di gate: ogni calcolo e' scrivibile come una sequenza finite di alcune porte logiche ({AND-OR-FANOUT}, {NAND})

Irreversibilita' (n != m) non sempre dal risultato si torna all'input

"...l'informazione e' fisica..."